Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity

نویسنده

  • Xunxian Liu
چکیده

Aging is linked to decrease of the body cell use of growth hormone (GH) and thyroxine, whereas the decrease is via "death hormones" inhibition? This study proposes different viewpoints. Since interleukin 17 receptor C (IL17RC) is highly expressed in tissues from age-related macular degeneration (AMD) patients, IL17RC signaling pathways are explored to evaluate Wnts/vascular endothelial growth factor (VEGF) expression and complement activity, which are pathological factors in AMD. IL17RC overexpression or VEGF treatment was performed in two cell lines for up to two-day. Real-time Quantitative PCR, confocal microscopy, immune-blot, MTT assay, etc. measured downstream effects. IL17RC overexpression increases Wnts and VEGF that forms complexes with Wnt-signaling components. VEGF or the Wnt-signaling components interacting with C3 suggests alternative complement pathway activation. Moreover, IL17RC-overexpressed cells or VEGF-treated cells for two-day, which is overstimulation, increase PI3K/Akt/GSK3 insensitivity and GSK3 activity, and decrease growth/survival. High GSK3 activity associates with many chronic diseases including type II Diabetes. This study shows high GSK3 activity can result from PI3K/Akt overstimulation. Type II Diabetes shows insulin resistance that the body cells decrease insulin use. Possessing little sensitive PI3K/Akt for receptor activation, cells after overstimulation, although live, hardly respond to PI3K/Akt activators including GH, thyroxine and insulin. These results suggest an alternative explanation of the body cells declining hormone use since various kinds of cell signaling-induced overstimulation events almost always linked to PI3K/Akt, increase with age. Playing pathological roles in senescence and diseases, overstimulation eventually generates health problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic over-nutrition and dysregulation of GSK3 in diseases

Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular...

متن کامل

Insensitivity of PI3K/Akt/GSK3 signaling in peripheral blood mononuclear cells of age-related macular degeneration patients

Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C (IL-17RC), a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration (AMD), was associated with altered activation of phosphatidylinositide 3-kinase (PI3K), Akt, and glycogen synthase kinase 3 (GSK3). We wondered whether or ...

متن کامل

Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells.

In addition to 17beta-estradiol binding, estrogen receptor (ER) transcriptional activity could be controlled by intracellular kinase signaling pathways activated by growth factors. In this report we present evidence suggesting that glycogen synthase kinase 3 (GSK3), an effector kinase of the phosphatidylinositol 3-kinase (PI3K) pathway, may affect ERalpha activity in N2a neuroblastoma cells. Li...

متن کامل

New methods to control neuroblastoma growth

Downstream of growth factor receptors, signaling by the phosphoinositide 3 kinase (PI3K) pathway is known to play an important role in the growth and survival of many tumor types. The PI3K pathway simplistically comprises PI3K itself, followed by PDK-1, then AKT and finally glycogen synthase kinase 3 (GSK3). PI3K/AKT signaling promotes increased GSK3 phosphorylation, that is associated with red...

متن کامل

Dexamethasone Inhibits Podocyte Apoptosis by Stabilizing the PI3K/Akt Signal Pathway

Corticosteroids like dexamethasone (DEX) are well-established treatments for the glomerular disease that sustain renal function, at least in part, by protecting podocytes from apoptotic death. In this study, we found that PAN causes abnormal expression of the PI3K-binding protein CD2AP, reducing PI3K/Akt signaling and promoting podocyte apoptosis. In contrast, DEX restores CD2AP-PI3K-Akt-GSK3 β...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014